Management of Chronic Heart Failure in General Practice

Paul Smith Consultant Cardiologist Bradford Royal Infirmary

Presentation Overview

- Prevalence and impact
- Assessment of heart failure patient
- Actiology and Pathophysiology
- Modern management of heart failure
- Monitoring and chronic disease management
- When to refer for Specialist advice
- Brief overview of cardiac resynchronisation therapy

The Incidence of Heart Failure

- Heart failure effects 1-2% of adult UK population
- Incidence of 5-10 cases per 1000 population per year

Heart Failure is Bad News!

Heart Failure is Costly

- 5% of all medical admissions
- £716M per annum
- 1.8% of total NHS budget
- 70% due to hospitalisations
- Heart failure "the growing epidemic"
- Admissions predicted to rise by 50% over the next 25 years

Chronic Heart Failure

"Heart failure is a complex **syndrome** that can result from any structural or functional cardiac disorder that impairs the pumping ability of the heart"

Stages in the Development of Heart Failure

	Stage	Patient Description
A	High risk for developing heart failure (HF)	 Coronary artery disease Hypertension Diabetes mellitus, obesity Family history of cardiomyopathy
В	Asymptomatic HF	 Previous myocardial infarction Left ventricular systolic dysfunction Asymptomatic valvular disease
С	Symptomatic HF	 Known structural heart disease Shortness of breath and fatigue Reduced exercise tolerance
D	Refractory end- stage HF	 Marked symptoms at rest despite maximal medical therapy (e.g., those who are recurrently hospitalised or cannot be safely discharged from hospital without specialised interventions)

Increasing severity

Diagnosing Heart Failure

- Shortness of breath on exertion
- Fatigue (exercise intolerance)
- Orthopnoea
- Paroxysmal nocturnal dyspnoea
- Fluid retention

...symptoms are non-specific and present in many other conditions!

Masquerading as Heart Failure

- Obesity
- Venous insufficiency
- Drug induced ankle swelling
- Chest disease pulmonary embolic disease
- Angina
- Hypoalbuminaemia
- Renal or hepatic disease
- Depression/anxiety
- Severe anaemia or thyroid disease
- Bilateral renal artery stenosis

Diagnosing Heart Failure

- The most specific signs are:
 - Laterally displaced apex beat
 - Elevated JVP
 - Third heart sound
- Less specific signs include:
 - Basal crackles
 - Peripheral oedema
 - Hepatic engorgement
 - Tachycardia

....signs are insensitive and may not be present!

Heart Failure - baseline investigations

- FBC, U+E, LFT, TFT, glucose, lipids
- NT-pro-BNP (if available)

- Abnormal in over 90%
- LBBB, Q waves
- LVH
- AF
- ST/T wave changes
- VE, NSVT

Heart Failure Diagnostic Pathway

No investigation for heart failure has 100% negative predictive value. If clinical suspicion remains high then specialist referral recommended

Echocardiography

- Single most effective tool in the diagnosis of heart failure
- Provides information on structure and function of cardiac chambers, valves and pericardium
- EF useful measure of LV systolic dysfunction
- Reports should provide information in clinical context
- Other imaging modality may need to be considered for obese and chronic lung disease

- Heart failure is <u>not</u> a complete diagnosis
- Requires more than stating whether syndrome present or not
- The following should be considered:
 - Underlying cardiac condition
 - Severity of the syndrome
 - Estimation of prognosis
 - Precipitating and exacerbating factors
 - Co-morbidity
 - Aetiology

Impact of Comorbidities on Heart Failure Treatment

Comorbidity	Comments
COPD/Asthma	β Blockers are contraindicated in reversible airways
	disease.
Renal failure	ACEi and ARBs may be contraindicated
(creat>200µmol/l)	
Thyroid	Severe thyroid disease may cause/precipitate HF
PVD	High index of suspicion of RAS
Urinary frequency	α blockers may cause fluid retention and hypotension. Diuretics may not be tolerated.
Gout	Exacerbated by diuretics. Avoid NSAID's.

NYHA Classification

NYHA functional class	Definition	Diagnosed HF cases %
NYHA 1	No limitation: ordinary physical exercise does not cause dyspnoea or fatigue.	0
NYHA 2	Slight limitation of physical activity. Patients are comfortable at rest. Ordinary physical activity results in breathlessness, fatigue, palpitations or angina (symptomatically mild heart failure).	69
NYHA 3	Marked limitation of physical activity: comfortable at rest but dyspnoea washing and dressing, or walking from room to room (symptomatically moderate heart failure).	15
NYHA 4	Severe limitation of physical activity: dyspnoea at rest, with increased symptoms with any level of physical activity (symptomatically severe heart failure).	16

Aetiology of Heart Failure

Compensatory Mechanisms

- Body "sensing" poor perfusion as hypovolaemia
- Mechanisms evolved to save our ancestors

Response	Short term Effects	Long term Effects				
Salt and water retention	Augments preload	Pulmonary congestion/ oedema in proximal bed				
Vasoconstriction	Maintains BP for perfusion of vital organs	Exacerbates pump dysfunction (inc. afterload) increases cardiac energy expenditure				
Sympathetic Stimulation	Increases HR and ejection fraction Peripheral vasoconstriction	Increases energy expenditure and risk of sudden arrhythmia and death *				
MAJOR CAUSE OF POOR LONG TERM OUTCOMES						

Heart Failure Vicious Cycle

Heart Failure Management Timeline

Modern Management of Heart Failure

Aims of therapy in heart failure:

- Improve life expectancy
- Improve quality of life

The relative importance of these varies:

- between patients
- over time

Modern Management of Heart Failure

- Multidisciplinary approach
- Lifestyle measures
 - Patient education/support
 - Weight control (volume status)
 - Dietary modification (salt, alcohol)
 - Reducing fluid intake
 - Smoking cessation
 - Exercise and rehabilitation
 - Influenza vaccination
- Pharmacological therapy what to use and what to avoid!
- Devices and surgery

Drug Therapy in Heart Failure

- Diuretics
- Neurohormonal antagonists
 - □ ACE inhibitors
 - Beta blockers
 - Aldosterone antagonists
 - Angiotensin receptor blockers
- Digoxin
- Other drugs
 - Nitrates/hydralazine
 - Amiodarone
 - Warfarin
 - Aspirin

Treatment Algorithm for the Management of CHF

NICE, 2003

Digoxin

- Oldest established drug treatment for HF
- Extract of Foxglove (*Digitalis purpurea*)
- 1785 William Withering
- Narrow therapeutic window
- Arrhythmias and GI side effects common

DIG Trial 1997 (Digoxin 250µg od.)

- No mortality benefit
- Significant reduction in hospitalisations due to worsening HF

Digoxin

- Digoxin is recommended for:
 - i. Worsening or severe heart failure due to LV systolic dysfunction despite ACE inhibitor, beta-blocker and diuretic therapy
 - ii. Patients with AF and any degree of heart failure

NICE, 2003

Diuretics

- 1920 Organomercurial diuretics first used
- 1958 Thiazide diuretics introduced
- Useful in the acute setting and in the overloaded patient
- Rapid relief of congestive symptoms
- Exacerbate RAA system due to diuresis and natriuresis
- No evidence for mortality benefit, no effect on disease progression
- Need to up and <u>down</u> titrate according to symptoms

"Diuretics should be routinely used for the relief of congestive symptoms and fluid overload in patients with heart failure"

ACE Inhibitors (1)

- First ACE inhibitor Captopril synthesised in 1977
- Undisputable evidence of reduction in mortality in chronic HF
- Review of data from 5 RCT's
- Compared with placebo. ACEi reduce
 - Mortality (p<0.0001)
 - Readmission (p<0.0001)</p>
 - Reinfarction (p<0.0001)</p>
- Benefit occurs early (30 days)

Flather et al., Lancet 2000

ACE Inhibitors (2)

- in symptomatic heart failure patients:
- CONSENSUS 1987 (First ACEi trial Enalapril 20mg bd)
- SOLVD 1990
- ATLAS 1999 (High v Low dose Lisinopril)
-in post infarct heart failure:
- SAVE 1991 (Captopril 50mg tds)
- AIRE 1993 (Ramipril 5mg bd)
- TRACE 1995 (Trandolapril 4mg od)
-and in asymptomatic patients with LV dysfunction:
- SOLVD 1990 (prevention arm)
- TRACE 1995
- SAVE 1991

ACE inhibitors (3)

"all patients with heart failure due to

considered for treatment with an ACEi"

LV systolic dysfunction should be

- start with low dose
- aim for trial target dose or highest tolerated dose
- Remember, some ACEi is better than none
- Symptomatic low BP (stop other vasodilators ± diuretics)
- Monitor creatinine and electrolytes
- Rise in creatinine of 30% is probably acceptable

Aldosterone & Heart Failure

Aldosterone Antagonists

- 2 currently available:
- Spironolactone
- Eplerenone

Spironolactone

- RALES trial 1999 (25mg od)
- NYHA III/IV on ACEi, diuretic ± digoxin
 - 30% RRR in death
 - 35% RRR in hospitalisation

N Engl J Med 1999;**341:**709-17

NICE Recommendations on Spironolactone

'Heart failure patients who remain moderateseverely symptomatic despite OMT should be prescribed spironolactone at a dose of 12.5 - 50mg daily"

- Symptom improvement in weeks months
- Monitor Potassium & Creatinine
- If hyperkalaemia occurs, halve dose
- S.E. Breast discomfort +/- gynaecomastia

Aldosterone antagonist for heart failure post MI

*CV hospitalisation = hospitalisation for heart failure, MI, stroke, or ventricular arrhythmia

Pitt B et al. Cardiovasc Drugs and Therapy 2001; 15: 79-87

All-Cause Mortality

CV Mortality/Hospitalisation

Summary: Aldosterone antagonists

- ACE inhibitors and ARB's do not adequately suppress aldosterone levels, leading to aldosterone 'escape'
- When added to conventional therapy in HF aldosterone receptor antagonists are cardioprotective
 - \downarrow all-cause mortality
 - \downarrow cardiac mortality
 - \downarrow hospitalisations for heart failure
- These benefits are in addition to those conferred by ACE inhibitors

Aldosterone antagonists: -

- Spironolactone or Eplerenone?
- Licensed for different indications
- No evidence for beneficial effect of Spironolactone in heart failure post MI
- No evidence for beneficial effect of Eplerenone in CHF
- 10% incidence of gynaecomastia with Spironolactone
- Similar problems with hyperkalaemia
- Eplerenone significantly more expensive

Beta Blockers in Heart Failure

- ß blockers protect against plasma Norepinephrine/Epinephrine
- More patients in trials with beta-blockers than ACEi

Name	Drug	Year	n
MDC	Metoprolol tartrate 100-150mg/day	1993	383
MERIT-HF	Metoprolol succinate 200mg od	1999	3991
US Carvediolol HF Program	Carvedilol 25-50mg bd	1996	1094
CIBIS II	Bisoprolol 10mg 0d	1999	2647
COPERNICUS	Carvedilol 25-50mg bd	2000	2289

Beneficial effects of Beta Blockers MERIT-HF

Time after inclusion, days

..... and in the Elderly?

SENIORS Trial (2005)

- First HF outcome trial restricted to elderly (mean age 76 yrs)
- Nebivolol (Long acting, cardioselective, vasodilating properties)

Nebivolol initiated at 1.25mg. Target 10mg od.

Beta blockers and heart failure

"all patients with heart failure should be considered for treatment with a beta blocker"

Which beta blocker, and what dose?

- Stick to beta blocker with evidence base
- 3 licensed in UK (Carvedilol, Bisoprolol & Nebivolol) Bisoprolol (β1 selective).
 Carvedilol (Mixed α1, β1, β2 antag)

Nebivolol (B1 selective & Vasodil. ? via NO)

- What dose? "Start low, go slow"
- Aim for trial doses (or max tolerated)
- Some better than none!

Beta blockers - practical advice

- Initiate slowly, in stable patients (i.e. no congestion)
- B blocker or ACEi first?

CIBIS III - Mild-moderate HF bisoprolol or enalapril first No difference in mortality / hospitalisation

• What if increasing congestion?

Double diuretic, if no better halve ß blocker (? stop in short term)

- What if profound fatigue/bradycardia? Unusual. Halve dose, reassess
- Inform patients:

Primary aim of Rx is to prevent worsening HF & ↑ survival If symptoms do improve, it can take weeks - months Temporary deterioration of symptoms in 20 - 30%

Angiotensin Receptor Blockers

- ACEi fail to block RAS completely
- ARB's prevent binding of angiotensin II to type 1 receptor

Angiotensin Receptor Blockers

Chronic Heart Failure Trials

- ELITE II2000 (non inferiority to ACEi, better tolerated)
- VALHeFT 2002 (ARB + ACEi \downarrow hospitalisations, but not mortality)

Post MI heart failure trials

- OPTIMAAL 2002 (ACEi better at reducing mortality)
- VALIANT 2003 (ARB similar to ACEi at reducing mortality)

CHARM Trial

7,601 patients with heart failure

3 Individual component randomized trials with the ARB candesartan (4 or 8 mg/day, titrated to target dose of 32 mg) or placebo

CHARM Added

Patients with LVEF
 <40% and treated with an ACE-inhibitor

CHARM Alternative

 Patients with LVEF <40% and ACEinhibitor intolerant

CHARM Preserved

 Patients with LVEF
 >40% with or without ACE-inhibitor

Endpoints (follow-up minimum 2 years):

- Primary Component trials: cardiovascular mortality or HF hospitalization
- Primary Overall trial results: All-cause mortality

CHARM TRIAL

Alternative Trial

Added Trial

CV Mortality or CHF hospitalization

CV Mortality or CHF hospitalization

Angiotensin Receptor Blockers - Summary

- ARB's are a good alternative to ACEi in symptomatic patients intolerant to ACEi to improve morbidity and mortality
- ARB's can be considered in combination with ACEi in patients who remain symptomatic, to reduce mortality and hospitalisation for HF (CHARM-added).

Heart Failure Chronic Disease Management Follow up interval should be *maximum* of 6 months

- Functional capacity History / NYHA class / QOL / 6MW / CPX
- Assessment of fluid status weight / L+S BP / clinical examination
- Assessment of cardiac rhythm clinical examination, ECG
- Laboratory assessment minimum U+E's
- Management plan compliance with diet, fluid, exercise, lifestyle
- Co-medications check all medications (prescribed and OTC)
- Medical complications angina, depression, renal failure, anaemia

Patient Self Monitoring

- Patients can monitor their volume status by daily weighing and adjustment of diuretic regime.
- Requires education and support
- Patients taught to recognise early signs of decompensation and how to seek professional help
- Key role for Heart Failure Specialist Nurse (education & support)

Drugs to avoid in Heart Failure

- Anti-inflammatory medication (NSAIDS, COX 2 inhibitors)
- Class 1 antiarrhythmic agents (e.g. flecainide, lignocaine)
- Calcium channel antagonists
 - Rate limiting non-dihydropyridine (verapamil, diltiazem)
 - First generation dihydropyridine (nifedipine)
- Tricyclic antidepressants
- Lithium
- St Johns Wort
- Cautious use of steroids

Depression: Common and important

- Consider depression in all patients with heart failure
- Prevalence of 30% in non-hospitalised HF patients
- Diagnosis more common in those with physical symptoms and poorer physical functioning
- Depressive symptoms strongly linked with worse outcome
- But, risk/benefit of antidepressants carefully

When to Refer to a Specialist?

- Diagnostic uncertainty
- Heart failure due to valve disease
- Heart failure due to diastolic dysfunction
- Advanced heart failure (NYHA class III and IV)
- Severely impaired LV
- Patients with significant co-morbidity
- Symptomatic arrhythmia
- Women planning pregnancy
- HF no longer manageable in home setting

Cardiac Resynchronisation Therapy

- an option in advanced heart failure

What is it?

- Cardiac Resynchronisation Therapy (CRT), or, BiV Pacing
- CRT first described in 1980's
- Introduced clinically a decade later
- Routine pacemaker implant (local anaesthetic)
- With or <u>without</u> ICD capability

Achieving Cardiac Resynchronisation

Goal: Atrial synchronous biventricular pacing

Transvenous approach for left ventricular lead via coronary sinus

Back-up epicardial approach

Why do it?

- LBBB occurs in approx 30% of HF patients.
- LBBB is an independent predictor of increased mortality in HF
- Delayed LV activation (His-Purkinje system / conduction block / fibrosis)

Mechanical Dyssnychrony

Mechanical Dyssynchrony is Bad News!

- Early septal contraction \rightarrow pressure low \rightarrow no ejection
- Late postero-lateral contraction → paradoxical stretch (early contracting segments)
- Early / late contraction = "wasted work"
- Increased time in IVC and IVR.
- Reduced ejection / diastolic filling time
- Increased global / regional wall stress
- Increased myocardial O₂ consumption
- Protracted mitral regurgitation (LV dilatation / lateral papillary muscle)

Abnormal local wall strain in LBBB

What are the benefits of CRT?

Cumulative Enrollment in CRT Randomised Trials

Proven Benefits of CRT

Improves patient's functional status

- \uparrow 6 min walk distance by ~ 20%
- \downarrow NYHA class by 0.5-0.8 points (58% v 37% \downarrow by at least 1 class)
- 1 VO2 Max: by 10-15%
- QOL (MLWHF) Significantly improved (8.4 points)

Improves "pump" function

- $26\% \downarrow$ in LVESV at 18 months
- Significant reduction in MR regurgitant area
- Approx $6\% \uparrow$ in EF

Reduces Hospitalisation

• \downarrow relative risk of admission for worsening CCF by 52%

Reduces cardiovascular mortality

• Relative risk reduction of 40% in all cause mortality

Response to CRT

Pre CRT

Post CRT

What's the catch?

- Procedural risk (PTX, infection, lead displacement)
- 5% failure to deploy LV lead
- Of those successfully implanted 30% of patients do not respond.
 - i. Viable myocardium (cannot pace scar tissue)
 - ii. Shot ventricular function (RV / LV)
 - iii. QRS is imperfect marker for mechanical dyssynchrony
 - iv. LV lead position

Who benefits from CRT?

National Institute for Health and Clinical Excellence

Issue date: May 2007 Review date: July 2010

Cardiac resynchronisation therapy for the treatment of heart failure

NICE technology appraisal guidance 120

- NYHA Class III or ambulatory Class IV
- LVEF **≤**35%
- Sinus rhythm
- Optimal medical therapy
- Evidence of
 - QRS ≥ 150 msec
 - or, 120-149 msec with Echo evidence

